

210 Advanced Digital Systems

commonly called the

Header Error Check

(HEC) field, is defined by the polynomial x

8

 + x

2

 + x + 1.
The HEC is implemented with an eight-bit

linear feedback shift register

(LFSR) as shown in
Fig. 9.10. Bytes are shifted into the LFSR one bit at a time, starting with the MSB. Input data and the
last CRC bit feed to the XOR gates that are located at the bit positions indicated by the defining
polynomial. After each byte has been shifted in, a CRC value can be read out in parallel with the
LSB and MSB at the positions shown. When a new CRC calculation begins, this CRC algorithm
specifies that the CRC register be initialized to 0x00. Not all CRC algorithms start with a 0 value;
some start with each bit set to 1.

The serial LFSR can be converted into a set of parallel equations to enable practical implementa-
tion of the HEC on byte-wide interfaces. The general method of deriving the parallel equations is the
same as done previously for the scrambling polynomial. Unfortunately, this is a very tedious process
that is prone to human error. As CRC algorithms increase in size and complexity, the task can get
lengthy. LFSRs may be converted manually or with the help of a computer program or spreadsheet.
Table 9.7 lists the XOR terms for the eight-bit HEC algorithm wherein a whole byte is clocked
through each cycle. Each CRC bit is referred to as Cn, where n = [7:0]. Once the equations are sim-
plified, matching pairs of CRC and data input bits are found grouped together. Therefore, the con-
vention Xn is adopted where Xn = Cn XOR Dn to simplify notation. Similar Boolean equations can
be derived for arbitrary cases where fractions of a byte (e.g., four bits) are clocked through each cy-
cle, or where multiple bytes are clocked through in the case of a wider data path.

TABLE

9.7 Simplified Parallel
HEC Logic

CRC Bits XOR Logic

C0 X0 X6 X7

C1 X0 X1 X6

C2 X0 X1 X2 X6

C3 X1 X2 X3 X7

C4 X2 X3 X4

C5 X3 X4 X5

C6 X4 X5 X6

C7 X5 X6 X7

x1

+

x2

++

x3 x4 x5 x6 x7 x8

Data Input (MSB First)

CRC LSB (C0) CRC MSB (C7)

FIGURE 9.10 HEC LFSR.

-Balch.book Page 210 Thursday, May 15, 2003 3:46 PM

Networking 211

When a new HEC calculation is to be started, the CRC state bits are reset to 0. Each byte is then
clocked through the parallel logic at the rate of one byte per cycle. Following the final data byte, the
HEC is XORed with 0x55 to yield a final result. An arbitrary number of bytes can be clocked
through, and the CRC value will change each cycle. The one exception to this is the case of leading
0s. Because the HEC specifies a reset state of 0, passing 0x00 data through the CRC logic will not
result in a nonzero value. However, once a nonzero value has been clocked through, the LFSR will
maintain a nonzero value in the presence of a stream of 0s. This property makes the HEC nonideal
for checking arbitrary strings of leading 0s, and it is a reason why other CRC schemes begin with a
nonzero reset value. Table 9.8 shows an example of passing four nonzero data bytes through the par-
allel HEC logic and then XORing with 0x55 to determine a final CRC value.

Another common CRC is the 16-bit polynomial appropriately called

CRC-16

. Its polynomial is
x

16

 + x

15

 + x

2

 + 1, and its LFSR implementation is shown in Fig. 9.11. As with the HEC, a CRC-16
can be converted to a parallel implementation. Because the CRC-16 is two bytes wide, its common
implementations vary according to whether the data path is 8 or 16 bits wide. Of course, wider data
paths can be implemented as well, at the expense of more complex logic. Table 9.9 lists the CRC-16
XOR terms for handling either one or two bytes per cycle.

Properly calculating a CRC-16 requires a degree of bit shuffling to conform to industry conven-
tions. While this shuffling does not intrinsically add value to the CRC algorithm, it is important for
all implementations to use the same conventions so that one circuit can properly exchange CRC
codes with another. Unlike the HEC that shifts in data bytes MSB to LSB, the CRC-16 shifts in data
bytes LSB to MSB. In the case of a 16-bit implementation, the high-byte, bits [15:8], of a 16-bit
word is shifted in before the low-byte, bits [7:0], to match the standard order in which bytes are
transmitted. What this means to the implementer is that incoming data bits must be flipped before
being clocked through the parallel XOR logic. This doesn’t actually add any logic to the task, and

TABLE

9.8 Examples of HEC Calculation

Data Input HEC Value

(Initialization) 0x00

0x11 0x77

0x22 0xAC

0x33 0xD4

0x44 0xF9

XOR 0x55 0xAC

x1 x2

++

x3 x4 x5 x6 x7 x8

Data Input (MSb First)

CRC LSb (C0) CRC MSb (C15)

x9 x10 x11 x12 x13 x14 x15 x16

+

FIGURE 9.11 CRC-16 LFSR.

-Balch.book Page 211 Thursday, May 15, 2003 3:46 PM

